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Abstract 

 

Deep Learning has shown extensive promise, in academic research, 
for diagnosing disease. It can improve patient outcomes while 
reducing professional workloads. But these diagnostic methods are 
still not prevalent in clinical settings, and rightfully so, due to issues 
surrounding trustworthiness and explainability. This thesis presents a 
comprehensive new study on quantifiably measuring explainable AI 
techniques, in the context of diagnosing skin cancer, to increase 
trustworthiness and model adoption in real-life settings. 

 

Firstly, classification models were trained to achieve state-of-the-art 
metrics (precision, recall, accuracy) using the HAM10000 dataset 
containing seven diagnostic categories related to skin cancer. The 
models included Convolutional Neural Networks (CNNs) built from 
scratch along with architectures such as DenseNet, MobileNet, and 
ResNet trained through transfer learning. The dataset was split into 
training, validation, and test subsets, with augmentation, 
oversampling and hyperparameter tuning techniques applied to 
enhance global test accuracy. 

 

Once the models had been trained, methods such as SHAP, LIME, 
and Integrated Gradients were utilized to generate feature-based 
explanations for model predictions. The final step, wherein lies the 
novel contribution of this thesis, was the quantification of these visual 
explanations. Metrics such as faithfulness, robustness and complexity 
were used to evaluate the explanation methods. All code, models, and 
results are publicly available.  
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Chapter 1: Introduction 

 
1.1 Background 
 
There is a lot of ongoing research on complex models that can ingest large amounts of data to support 
medical diagnosis decisions. Several highly accurate models trained in a variety of specific areas such 
brain disorders, breast cancer, skin cancer, gait issues, etc. can be found. Nonetheless, these models 
have found limited application in clinical settings. There are a few reasons for this, including a lack of trust 
from the humans in the loop and issues related to the generalization abilities of the models. To solve these 
problems, there has been research that implements explainable AI techniques to aid in improving 
trustworthiness. One of the issues with this research has been the gap in quantitative measurements of 
the effectiveness of these techniques.  
 
1.2 Problem Statement 
 
A skin lesion is abnormal skin growth. Some of these lesions can be cancerous, and their early detection 
is crucial for patient survival. Malignant melanomas, caused by UV exposure and commonly seen in areas 
with high sun exposure, can be deadly if not found early. The 5-year survival rate drops to 18% from 98% 
if the cancer spreads to other organs. Skin cancer rates around the globe are also on the rise. For the 
diagnosis of lesions, highly trained dermatologists are needed to look at the images. So, deploying 
accurate computer aided diagnosis tools can aid with the important issue of catching the tumor early on 
and reducing the clinical workload. Such models can also help reduce the incidence of biopsy tests, which 
are invasive and time consuming. Given these obvious benefits, there has been a rise of machine learning 
in medical diagnostics that has led to significant advancements in disease detection, particularly for skin 
cancer. For instance, leveraging the HAM10000 dataset, researchers have developed a number of 
classification models, including traditional machine learning techniques like Support Vector Machines, and 
Decision Trees as well as deep learning architectures like DenseNet, MobileNet, and ResNet (Tschandl 
et al., 2018). These models are slowly but surely moving to the implementation phase, with a large number 
of methods and devices approved by standards agencies, and AI/ML/DL basics being introduced in the 
education of clinicians.  
 

 
Figure 1: Rising Skin Cancer Incidence Rates in Australia 

 
But many concerns persist about the reliability, interpretability, and transparency of these models. For 
example, a medical expert cannot easily reason through the output of these models. While many models 
have been shown to successfully classify skin lesions, matching and even outperforming human experts, 
the challenge to understand the reasoning behind these decisions remains (Haenssle et al 2018, Brinker 
et al 2019). Despite achieving a high accuracy, they are “black boxes”, with no human understandable 
insight available into their reasoning. This opacity is problematic in medical contexts where understanding 
the reasoning behind a diagnosis is crucial for clinical acceptance and patient trust (Amann et al., 2020). 
This can be incrementally problematic in scenarios where the models provide an outcome that differs from 
the medical expert. As noted in Holzinger et al (2017), new policies such as the changes to the GDPR are 
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now also making retrace-ability of decisions to be a requirement. Explainability will therefore be key in 
enabling deployment to clinics. 
 
The emergence of Explainable AI (xAI) techniques like SHAP, LIME, and Integrated Gradients promises 
to demystify these models by offering post hoc explanations (Ribeiro et al., 2016; Lundberg & Lee, 2017; 
Sundararajan et al., 2017). However, there is a significant gap in the literature regarding the quantification 
of the effectiveness of these xAI methods. Current research predominantly focuses on the implementation 
of xAI without critically assessing their explanatory quality, leading to a need for systematic evaluation 
frameworks. There have been many explainability studies that focus on showing features that influence 
the model’s decisions for example. But there are barely any that focus on how well the visual technique 
explains the model and its outputs. 
 
1.3 Model  
 
For training to classify various cancerous and non-cancerous lesions, the proposed model uses an existing 
well-known dataset used in this field. Namely, the ISIC dataset (2018): HAM10000. This dataset consists 
of images of skin lesions along with labels describing whether or not the lesion is cancerous and which 
specific major category it belongs to if so. The models trained on this dataset are: Convolutional Neural 
Networks, DenseNet, MobileNet, Inception, etc. Once the models were trained, model agnostic 
explainability techniques like Integrated Gradients, Shapley Values and LIME were used to train explainers 
on top of the models. Metrics that tested for faithfulness and robustness were then used to quantitatively 
compare the explainers and therefore improve them through an improved choice of hyperparameters. 
 
1.4 Solution Approach, Outcomes, and Contribution 
 
To address the challenge of enhancing the trustworthiness of AI-driven skin cancer diagnostics, this 
research employed a multi-faceted approach using the HAM10000 dataset. Initially, various classification 
models were developed, including simple convolutional neural networks and other, more complex deep 
learning architectures. Each model underwent rigorous training with data augmentation and oversampling 
to improve accuracy, precision and recall. Hyperparameter tuning ensured optimal model performance. 
Subsequently, Explainable AI (xAI) methods, including SHAP, LIME, and Integrated Gradients, were 
applied to generate post hoc explanations for model predictions. The novel contribution of this research 
lies in the quantitative evaluation of these visual explanation methods using a variety of different metrics 
focused on faithfulness, robustness, localization, etc. This comprehensive framework advanced the 
systematically by systematically assessing the explanatory power of xAI techniques under a number of 
metrics belonging to faithfulness, robustness and complexity. The lack of a diverse dataset and the 
complexity and computational intensity of these models represent significant limitations that require further 
work. 
 

 
Figure 2: Solution Approach 
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The success of the proposed methods was evaluated through a well-designed experimental setup. The 
HAM10000 dataset was split into training, validation, and test subsets to ensure that the model could be 
validated and improved while training but also go through a final test with completely unseen data from a 
different source. Data augmentation and oversampling techniques were employed to address class 
imbalances and enhance generalizability. Custom code was developed to implement various models and 
xAI methods, followed by extensive hyperparameter tuning. Evaluation of the models involved common 
metrics in medical diagnostics such as accuracy, AUC-ROC, F1 score, recall, precision, and MCC. 
Additionally, novel explainability metrics such as faithfulness correlation and sensitivity were used to 
assess the explanations provided by the trained explainers. This dual approach of evaluating both model 
performance and explainability ensures a holistic assessment, which is a crucial part of the deployment of 
AI in medical diagnostics.  
 
The research yielded significant and impactful results. The developed classification models achieved high 
accuracies. More importantly, the quantitative evaluation of xAI methods demonstrated how changing the 
parameters while training explanation techniques showed a clear correlation with changes in their 
explainability metrics. This directly enables the development of better explainers of the AI models. By 
testing some of these explainability metrics, this study helps work towards a robust framework for 
evaluating the explainability of AI models in medical diagnostics. Inductive bias introduced due to the 
model choices and the data used are limiting factors for the outcomes of this research. But the potential 
impact of exploring the methods above will be an increase in clinical deployment of these models, owing 
to an improvement in trust, interpretability, and reliability. Additionally, successful results in skin cancer 
diagnostics can also be replicated in other forms of image based diagnostics. 
 
1.5 Outline 
 
This project proposal is organized as follows. Chapter 2 reviews the literature on various types of models 
and key ideas, explainable AI methods and evaluation metrics for explainability, all within the context of 
applications in medicine.  Chapter 3 further defines the problem. Chapter 4 describes the solution approach 
and methodology. Chapter 5 goes through the various legal, professional and ethical issues related to this 
research. Chapter 6 presents the results and finally, Chapter 7 provides the conclusion. 
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Chapter 2: Literature Review 
 

2.1 Introduction 
This literature review critically examines various models and techniques that address reliability and 
transparency concerns, focusing on fundamental concepts important to this study, along with previous 
applications in healthcare. The first sub-section focuses on the models (convolutional neural networks and 
transfer learnt DenseNet, MobileNet, etc.), including all the parameters important for the training. Next, is 
a look at the basics of Explainable AI and then its application in healthcare. Finally, the focus is on 
Evaluation of Explainability, including previous applications in healthcare. 

 

2.2 Models 
 
2.2.1 Model Parameters and Data 

i. Learning Rate and Adjustments: Learning rate is a model hyperparameter that represents the step size 
per iteration as the optimizing function moves towards minimum loss. An appropriate learning rate is 
important for the model to actually converge. If it’s too high, the model may converge quickly but to a 
suboptimal solution, but if it’s too low, we can run into a long training process, face computing and resource 
constraints while still potentially getting stuck in a local minima. Techniques such as learning rate 
scheduling, where the learning rate is adjusted during training, can help in finding a balance. Reduce on 
plateau is a learning rate scheduling technique where the rate is reduced if the model's performance metric 
(such as validation loss) does not improve for over a specified timeframe/epochs. This approach helps the 
model converge more effectively by allowing finer adjustments when the training progress stalls (Bengio, 
2012). While some research does suggest that cyclically varying learning rates between a minima and a 
maxima can provide accuracy and efficiency benefits (Smith, 2017), for the purpose of this study, a more 
conventional approach was used. Early stopping is another regularization technique used for avoiding 
overfitting by halting training when performance degrades. This technique is particularly beneficial in 
medical diagnostics, where overfitting can lead to models that perform very well in training but poorly on 
unseen data, thereby reducing their clinical utility. 

ii. Data Augmentation and Sampling: Image augmentation is a technique where the training dataset is 
artificially expanded by applying random transformations such as rotations, shifts, translations, flips and 
crops to the existing image. This process helps in improving the model's robustness and generalizability 
by exposing it to a variety of scenarios during training (Perez and Wang, 2017). In medical diagnostics, 
with a scarcity of large annotated datasets, data augmentation is invaluable for enhancing model 
performance and preventing overfitting. Oversampling addresses class imbalance by duplicating instances 
of the minority class to ensure that the model receives enough representation from the minority classes 
during training. For instance, Synthetic Minority Over-sampling Technique (SMOTE) create synthetic 
examples rather than simple duplication, further enhancing model robustness (Chawla et al., 2002). In this 
study, a random oversampling technique was employed. 
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Figure 3: Some Sample Input and Augmented Images 

iii. Loss and Optimizer Function: The choice of optimizer significantly impacts training dynamics and 
eventual performance of models. Stochastic Gradient Descent (SGD) has been a traditional choice due to 
its simplicity and efficiency but it can be slower to converge and more sensitive to the choice of learning 
rate. Adam (Adaptive Moment Estimation) is an optimizer computes adaptive learning rates for each 
parameter by considering the first and second moments of the gradients (Kingma & Ba, 2014). Adam's 
adaptive nature makes it more robust to the choice of hyperparameters and well-suited for handling 
complex, high-dimensional datasets common in medical diagnostics. Categorical cross-entropy loss is a 
loss function commonly used for classification tasks where the goal is to assign inputs to one of several 
categories. This loss function is particularly suitable for medical diagnostics, where models often need to 
differentiate between multiple disease states. Categorical cross entropy loss was used alongside an Adam 
optimizer for the purposes of this study. 

iv. Epochs, Batch Size: The number of epochs determines how many times the model sees the dataset 
during training. Batch size refers to the number of training samples (images) used in one iteration. 
Selecting the right batch size and number of epochs is essential for model convergence. Too few epochs 
might lead to underfitting and too many can cause overfitting. Batch size affects the stability of the gradient 
descent process; smaller batches can provide a regularizing effect and reduce overfitting, but may lead to 
noisier gradient estimates (Goodfellow et al., 2016).  

v. Model Evaluation Metrics: Accuracy, the proportion of correct results to all results, is a fundamental 
metric for evaluating model performance. But accuracy alone can be misleading, especially in datasets 
with class imbalance. Precision, the ratio of true positives to all positives (true & false), and recall/sensitivity 
(the ratio of true positives to the sum of false negatives and true positives) are essential metrics that 
provide deeper insights into a model's performance on imbalanced datasets. Precision is particularly 
important in medical diagnostics to ensure that a high proportion of identified positive cases are true 
positives, thereby minimizing false positives. For instance, Esteva et al. (2017) highlighted the importance 
of precision in their deep learning model for skin cancer classification to reduce unnecessary biopsies. 
Recall is crucial for identifying as many true positive cases as possible, thereby reducing false negatives. 
In applications like cancer diagnosis, high recall ensures that most cases of the disease are detected, 
which is vital for timely treatment. 

F1 score, the harmonic mean of recall and precision, provides a measure that is more balanced, even 
when there is an uneven class distribution. The F1 score is a preferred metric in situations where the cost 
of false positives and false negatives needs to be equally minimized, such as medical diagnostics where 
both false positives and false negatives can carry significant consequences. MCC is another robust metric 
that provides a comprehensive evaluation of a model's performance. Unlike accuracy, MCC is high only if 
the classifier performs well across all confusion matrix categories, making it especially useful for 
imbalanced datasets. In medical diagnostics, MCC can provide a more accurate reflection of a model’s 
diagnostic ability (Chicco & Jurman, 2020). 

The AUC-ROC evaluates the trade-off between sensitivity (recall) and specificity (true negative rate) 
across different thresholds. AUC-ROC is particularly valued for its ability to provide a single metric that 
summarizes the model's performance across all classification thresholds. A model with a high AUC-ROC 
score indicates a good measure of separability, which is vital for reliable diagnostics. Multiple metrics need 
to be analyzed in tandem to get a good understanding of the capabilities of a model (Hicks et al, 2022). 
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Hyperparameter Value 

Learning Rate (Initial) 0.001 

Optimizer Function Adam 

Loss Function Categorical Cross Entropy 

Loss Metric Accuracy, F1 Score 

Batch Size 32 

Epochs 100 

Augmentation Random Flip, Zoom, Shift, Shear 

Sampling Random Minority Oversampling (rate=300%) 

Table 1: An example of hyperparameters and values used during the study 

 
2.2.2 Convolutional Neural Networks 
 
CNNs represent a class of deep NNs designed for image processing and feature extraction. They 
automatically learn hierarchical representations from pixel data. The key innovation lies in the application 
of convolutional layers, which enable the network to efficiently capture local patterns and spatial 
hierarchies within images. Convolution layers consist of learnable filters that slide over the input image, 
performing convolution operations. This process allows the network to detect patterns, edges, and textures 
at different scales and orientations. Pooling layers downsample convolutional layers, reducing 
computational complexity while preserving important features. The final layers of a CNN integrate high-
level features extracted by previous layers. These layers map these integrated features to the output 
classes through weighted connections. Activation functions, such as Leaky ReLU (Rectified Linear Unit) 
for example, introduce non-linearities to help the network handle more complex features.  
 
Hosny et al. (2018) demonstrated the application of CNNs in skin cancer classification, employing transfer 
learning to leverage pre-trained models on large datasets. Alfi et al. (2022) and Alkarakatly et al. (2020) 
utilized CNNs for the diagnosis of melanoma skin cancer. The studies employed an ensemble stacking of 
machine learning models while also emphasizing the importance of explainability in the diagnostic process. 
The CNNs played a pivotal role in learning discriminative features from skin lesion images, contributing to 
accurate and interpretable predictions. 
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Figure 4: Last few layers of a CNN trained from scratch during the experimentation 

 
2.2.2 Transfer Learning 
 
Transfer learning uses a pre-trained model, trained on a large dataset such as CIFAR or ImageNet, and 
adapts it to a new, smaller dataset relevant to a specific task. This method leverages the pre-trained 
model's learned features, thereby reducing the need for extensive training and computational resources. 
This approach is beneficial in medical diagnostics, where annotated data is often scarce. Some network 
architectures used in transfer learning are described ahead.  
 

1. DenseNet ensure maximum information flow by connecting each layer to every other layer in a 
feed-forward fashion. This architecture alleviates the vanishing gradient problem, encourages 
feature reuse, and improves model efficiency and accuracy (Huang et al., 2017). DenseNet has 
shown significant promise in medical image analysis, providing high accuracy with fewer 
parameters compared to traditional convolutional networks.  

 
2. ResNet introduced the concept of residual learning, allowing networks to be substantially deeper 

by using identity shortcut connections that bypass one or more layers. This architecture addresses 
the degradation problem, where increasing network depth leads to higher training error (He et al., 
2016). ResNet's ability to train very deep networks without performance degradation has made it 
a popular choice for various medical imaging tasks, including disease detection and classification 
(Brinker et al., 2018).  

 
3. MobileNet is designed for efficiency, focusing on reducing the model size and computational 

requirements while maintaining high accuracy. It uses depthwise separable convolutions to reduce 
the number of parameters and operations (Howard et al., 2017). The Inception architecture aims 
to improve network performance by efficiently combining multiple convolutional filter sizes into a 
single layer output. This approach allows the network to capture features at various scales and 
increases its representational power (Szegedy et al., 2015).  

 
Several different implementations of each of the models above are listed in Table 4. Fine-tuning is the 
process of further training a few or more previously ‘frozen’ layers of a pre-trained model. Weights are 
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slightly adjusted towards the new task, improving performance. Once some of the top layers of the model 
are unfrozen, it is jointly trained alongside the newly added classifier with a very low learning rate (Yosinski 
et al., 2014). In medical diagnostics, this allows for better characterisation of features specific to medical 
images, such as varying contrast, resolution, and anatomical differences. This process enhances the 
model's ability to generalize from the pre-trained domain (ImageNet) to the target domain (medical 
images), leading to better diagnostic accuracy.  
 

 
 

Figure 5: Some of the top layers of a transfer learnt DenseNet121 Model used in this study 
 
2.3 Explainable AI 

As artificial intelligence (AI) models, particularly deep learning models, become more pervasive in 
healthcare, there is an increasing need for explainable AI (xAI) to ensure that these models can be 
understood and trusted by clinicians. Explainability, interpretability, and trustworthiness are interrelated 
concepts that play crucial roles in the adoption of AI in clinical settings. This subsection examines various 
xAI techniques, distinguishing between explainability, interpretability, and trustworthiness, and explores 
both post hoc and ante hoc methods used to achieve explainability in AI models. 

1. Explainability is the ability to provide understandable and transparent explanations for AI model 
outputs. This can involve detailing the inner dynamics of a model or generating insights that make 
its behavior comprehensible to humans. 

2. Interpretability is often considered a subset of explainability focused specifically on making the 
model's predictions intelligible without necessarily exposing the model's internal mechanics. 

3. Trustworthiness encompasses both the reliability of the model and the quality of its explanations. 
Trust in AI models is built through consistent performance, transparency, and robust explanations 
that enable users to verify and validate model predictions.  
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Post hoc methods generate explanations after the model has been trained. They do not alter the original 
model but instead provide insights into how the model makes decisions. These methods are often model-
agnostic. Common post hoc techniques include: 

1. Feature Importance: Techniques such as SHAP and LIME highlight which features influence the 
model's predictions the most. SHAP values are assigned to each feature, indicating its contribution 
to the model's prediction. Derived from cooperative game theory, SHAP values provide a fair 
distribution of credit among features. SHAP provides consistent, locally accurate explanations and 
can handle any machine learning model. It also offers a global perspective by aggregating local 
explanations (Lundberg & Lee, 2017). LIME generates interpretable models for individual 
predictions by perturbing input instances and observing the corresponding changes in predictions, 
identifying the most influential features in the process. It creates a local surrogate model to 
approximate the behavior of the original model around a specific prediction. This surrogate is 
typically a simple, interpretable model like a linear regressor or a decision tree which can be much 
easier to interpret (Ribeiro et al., 2016). 

 

Figure 6: Example of a LIME Explanation. The green area signifies positive relationship with the label 
and the red signifies a negative on with the particular label under consideration. Axes are pixels, with 

the image of size 224 x 224 

2. Saliency Maps: Used primarily in image classification, saliency maps visualize parts of the image 
which the model considers most important for its predictions. These maps are particularly useful in 
medical imaging applications. 

3. Counterfactual Explanations: These provide alternative scenarios by showing how slight changes in 
input features could alter the model's prediction. This helps users understand the decision boundaries 
of the model. 

4. Rule Extraction: Methods like decision trees or rule-based systems extract rules from complex 
models, making them more interpretable by translating model decisions into simple, human-readable 
rules. 

5. Integrated Gradients: This method, particularly useful for neural networks, attributes the prediction 
of the network to its input features by integrating gradients of the model’s output with respect to the 
input along the path from a baseline input to the actual input. This provides insights into which features 
are most important for the model's decisions (Sundararajan et al., 2017). 

6. Grad-CAM: For CNNs, Grad-CAM generates visual explanations by highlighting  parts of an image 
that are most important for a specific model output. It uses the gradients of the target concept (e.g., a 
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specific disease) flowing into the final convolutional layer to produce a coarse localization map of the 
important regions (Selvaraju et al., 2017).  

 

7. Feature Visualization: Techniques like activation maximization help in understanding what kind of 
input patterns maximize the activation of certain neurons in neural networks. This method can provide 
insights into the hierarchical feature representations learned by the model. 

 

Figure 7: SHAP Example, here red denotes positive attribution towards the label and blue denotes 
negative. In this correctly classified image (label 0), you can see the features/regions that contributed 

to that output 

Ante hoc methods integrate explainability into the model during the training phase. These models are 
inherently interpretable because they are designed with transparency in mind. Common ante hoc 
techniques include: 

1. Interpretable Models: Models such as linear regression, decision trees, and logistic regression 
are inherently interpretable due to their simple structure. These models provide clear and 
straightforward explanations of their predictions. 

 

2. Attention Mechanisms: highlight important parts of the input data, providing insight into which 
features are most relevant for the model’s decision-making process.  

 

3. Self-Explaining Models: These models, such as some types of neural network architectures, are 
designed to produce both predictions and explanations simultaneously. An example is the Neural 
Additive Model (NAM), which combines the flexibility of neural networks with the interpretability of 
additive models. 

 

In this paper, the focus is primarily on Post Hoc Methods like SHAP, LIME and Integrated Gradients. 

 
2.5 Applications in Healthcare – Examples of xAI 
 
Wang (2023)’s survey on calibration in deep learning recognizes the significance of uncertainty 
quantification and xAI techniques in enhancing the explainability of models. Magesh et al. (2020) focuses 
on an explainable machine learning model for the early detection of Parkinson’s disease using LIME. Singh 
et al. (2020) contributes to the understanding of interpretability in medical image analysis. Shahsavari et 
al. (2023) introduce an ensemble of deep models for skin lesion detection, emphasizing the importance of 
interpretable machine learning in dermatology. Pieter Van Molle et al. (2018) focus on visualizing CNNs 
to improve decision support for skin lesion classification. The study highlights the significance of 
interpretability in the context of dermatological applications. Cristiano Patrício et al. (2023) conduct a 
survey on Explainable Deep Learning Methods in Medical Image Classification. The review encompasses 
a wide range of xAI methodologies, offering a comprehensive perspective on the interpretability landscape 
in medical imaging.  
 
Yaqoob et al. (2023) provide insights into the applications and techniques of machine learning in cancer 
classification. Xu et al. (2021) propose MANet, a two-stage deep learning method for the classification of 
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COVID-19 from chest X-ray images. Sobhan and Mondal (2021) focus on explainable machine learning 
to identify patient-specific biomarkers for lung cancer. Binder et al. (2021) explores morphological and 
molecular breast cancer profiling through explainable machine learning. Jiang et al. (2020) contribute to 
skin lesion segmentation based on a multi-scale attention convolutional neural network. Rezazadeh et al. 
(2022) explore explainable ensemble machine learning for breast cancer diagnosis based on ultrasound 
image texture features. The application of ensemble models and explainability metrics in this study offer 
valuable insights into enhancing the interpretability of models in dermatological applications. Ladbury et 
al. (2022) explore model-agnostic explainable artificial intelligence frameworks in oncology.  
 
2.6 Explainability Evaluation Metrics 
 
While various xAI methods have been developed on top of complex models, the evaluation of these 
methods' effectiveness remains a significant challenge. The effectiveness of xAI methods is typically 
evaluated using a range of metrics that assess different aspects of explanation quality. This review covers 
various approaches to evaluating the explainability of AI models, including user/expert studies, qualitative 
metrics, and automated quantitative metrics such as faithfulness, localization, complexity, plausibility, and 
robustness. 
 
User/Expert Studies 
 
User and expert studies are crucial for evaluating the interpretability and usability of AI explanations. These 
studies often involve domain experts and end-users assessing the explanations provided by AI systems 
to determine their comprehensibility and usefulness in decision-making processes. The feedback obtained 
helps in refining the models to better align with human cognitive processes and domain-specific 
requirements. For example, Doshi-Velez and Kim (2017) emphasized the importance of human-grounded 
evaluations, where explanations are tested on real users to assess their utility in practical scenarios. 
Poursabzi-Sangdeh et al. (2018) conducted studies to understand how explanations influence expert and 
non-expert users' trust in model predictions and their decision-making processes. 
 
Qualitative Metrics 
 
Qualitative metrics involve subjective assessments of explanations. These metrics consider how well an 
explanation communicates the model's reasoning process to users, including clarity, coherence, and 
completeness. Miller (2019) discussed various principles of human interpretability and highlighted the 
need for explanations to be simple, coherent, and contextually relevant to be effective. Ehsan et al. 
(2019) proposed a framework for evaluating the narrative quality of explanations, focusing on how well the 
explanation tells a story that users can understand and relate to their domain knowledge. 
 
Automated Quantitative Metrics 
 
Automated quantitative metrics provide objective measures for evaluating explainability. These metrics 
are particularly useful for large-scale assessments and benchmarking different models. 

1. Faithfulness: measures how accurately an explanation reflects the true reasoning process of the 
AI model. It ensures that the explanation is a truthful representation of the model’s decision-making 
process. For example, faithfulness correlation evaluates the correlation between importance 
assigned by the explainer and the actual impact of those features on the model's predictions (Bhatt 
et al., 2020). 

 
2. Localization: assesses how well an explanation identifies the relevant parts of the input. 

Localisation metrics usually rely on comparing segmentation maps with explainer identified image 
regions for assessing Intersection over Union for instance. 
 

3. Complexity: measures the cognitive load required for a human to understand the explanation. 
Lower complexity indicates a more interpretable explanation. Rudin (2019) argued for simpler 
models and explanations, emphasizing that less complex explanations are easier for humans to 
understand and verify. 
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4. Plausibility: assesses whether the explanation makes sense to human experts, even if it is not a 
perfect representation of the model's internal logic. Kulesza et al. (2015) proposed evaluating 
explanations based on how plausible they appear to domain experts, regardless of their 
faithfulness. 

 
5. Robustness: evaluates the stability of explanations under small perturbations of the input. An 

explanation is robust if small changes in the input do not significantly alter the explanation. Alvarez-
Melis and Jaakkola (2018) introduced methods to quantify the robustness of explanations, ensuring 
they remain consistent under similar conditions. 

 
Despite these advancements, several gaps remain in the evaluation of xAI methods. One significant gap 
is the lack of standardized benchmarks and datasets specifically designed for evaluating explainability 
metrics. This makes it challenging to compare the effectiveness of different xAI methods consistently. 
Additionally, while faithfulness and robustness are well-studied, comprehensibility remains subjective and 
challenging to quantify without extensive user studies, which are often resource intensive. Many existing 
studies also only focus on controlled environments or synthetic datasets, avoiding the variabilities 
encountered in practical applications (Bhatt et al., 2020). 
 
2.7 Applications in Healthcare - Examples of xAI Evaluation 
 

Study Methodology Metrics 

Makridis et al. (2023) Proposed a unified 
multidimensional explainability 
metric for healthcare AI models 

User trust, Model transparency 

Hu et al. (2022) Developed an explainable 
retrieval system for medical 
images 

Insertion and deletion based 
similarity scoring metrics 

Jin et al. (2022) Evaluated xAI algorithms on 
brain imaging tasks 

Faithfulness, Plausibility, 
Physician feedback 

Jin et al. (2023) Provided guidelines and an 
evaluation framework for clinical 
explainable AI in medical 
imaging 

Comprehensive evaluation 
framework 

Zou et al. (2023) Introduced an ensemble image 
xAI algorithm for severe 
pneumonia and COVID-19 
diagnosis 

Fidelity, Completeness, Clinical 
relevance 

Luis A. de Souza et al. 
(2021) 

Used saliency maps and other 
xAI techniques in cancer 
diagnosis 

User study, Saliency maps 

Pandey et al. (2024) Introduced quantifiable xAI 
methods for cardiac disease 
diagnosis 

Fidelity, Completeness, Stability 

Ghanvatkar et al. (2023) Integrated social science 
methods for assessing AI 
explanations in clinical practice 

Quantitative metrics (Accuracy, 
AUC), Qualitative assessments 
(clinician feedback) 

Siddiqui et al. (2023) Developed trust metrics for 
evaluating deep learning models 
in medical time series 
classification 

User trust, Model fidelity 

Table 2: Summary of Key studies in Explainability Evaluation in Healthcare 
 

The evaluation of xAI methods involves several metrics that measure different aspects of interpretability 
and trustworthiness. Key metrics include fidelity, completeness, consistency, stability, and user trust. 
These metrics help in understanding how well the explanations reflect the model's actual behaviour, 
whether they account for all significant features, and how robust they are against small perturbations in 
input data. But there is little consensus in the research as to which metrics need to be used for clinical 
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adoption. Makridis et al (2023) propose a framework that combines multiple dimensions of explainability, 
providing a comprehensive assessment that includes user trust and model transparency. Hu et al. (2022) 
developed an explainable retrieval system for medical images using insertion and deletion based similarity 
scoring metrics to grade different saliency maps of test datasets in ISIC and COVID, demonstrating the 
potential of explainable retrieval systems to enhance clinical decision-making by providing interpretable 
image comparisons. Jin et al. (2022) evaluated various xAI algorithms on brain imaging tasks, using 
faithfulness and plausibility metrics in the process along with feedback from physicians.  
 
Evaluation metrics including fidelity, completeness, and clinical relevance were used by Zou et al (2023) 
to assess the effectiveness of their ensemble xAI models. The results underscored the potential of using 
ensemble xAI methods to improve robustness and reliability. Luis A. de Souza et al. (2021) used saliency 
maps and other xAI techniques to explain model decisions in diagnosing cancer and scored the methods 
by comparing them against a user study of human expert segmentation results. Pandey et al. (2024) 
introduced quantifiable xAI methods specifically designed for cardiac disease diagnosis. Metrics used 
included fidelity, completeness, and stability. Ghanvatkar et al. (2023) integrated social science methods 
to gauge usability and interpretability of AI explanations in clinical practice. The evaluation included both 
quantitative metrics (e.g., accuracy, AUC) and qualitative assessments (e.g., clinician feedback). This 
approach promises to provide a comprehensive evaluation of xAI methods, ensuring they met the practical 
needs of clinicians. Siddiqui et al. (2023) developed trust metrics for evaluating the explainability of deep 
learning models in medical time series classification. The research used ensemble methods to enhance 
the interpretability and robustness of AI models, employing metrics like user trust and model fidelity to 
assess their effectiveness.  
 
From the above, we can note that combining quantitative metrics with qualitative assessments is crucial 
for a comprehensive evaluation of xAI methods. Equally important is the ensembling of different 
explanation methods together, an idea employed by at least 2 of the above-mentioned studies. Despite 
the progress in xAI evaluation in healthcare, several challenges remain. One major issue which is clear 
from the variety of metrics used in the aforementioned research, is the lack of standardized evaluation 
frameworks that can be universally applied across different healthcare domains and applications. 
Additionally, there is a need for more diverse datasets to ensure that xAI methods are generalizable and 
applicable to various patient populations. The integration of xAI methods into clinical workflows can be 
further complicated by the fact that end users sometimes prefer other explanation methods than those that 
are highest ranked by quantitative metrics. Ensuring that healthcare professionals trust and understand AI 
explanations is critical for the successful adoption of xAI methods in practice and so, it is important to 
integrate end users in the selection of the explanation model.   
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Chapter 3: Problem Statement 

 
3.1 Introduction 
 
Skin cancer remains one of the most common and dangerous forms of cancer globally. Accurate, early 
diagnosis is crucial for proper treatment and improving patient outcomes. Despite the considerable 
promise of AI/ML in diagnosing diseases, widespread adoption in clinical settings remains limited due to 
concerns surrounding trustworthiness and explainability. The primary aim of this thesis is to enhance 
diagnostic accuracy and provide meaningful explanations for model predictions using various explainable 
AI (xAI) methods. By quantifying and comparing the effectiveness of these xAI methods, this research 
seeks to improve the interpretability and reliability of skin cancer diagnostic models. 
 
 
3.2 Problem Definition 
 

Drawing insights from studies like Wang (2023), Magesh et al. (2020), Singh et al. (2020), Shahsavari et 
al. (2023), and Pieter Van Molle et al. (2018), this research underscores the critical role of explainable AI 
(xAI) methodologies. These methodologies contribute not only to the understanding of model decisions 
but also to the establishment of trust between healthcare professionals and machine learning systems. 
The project aligns with the vision outlined by Ladbury et al. (2022), exploring model-agnostic xAI 
frameworks in oncology, with metrics such as fidelity, faithfulness, and robustness offering quantitative 
insights into the reliability of skin cancer diagnostic models. The base classification problem in this study 
uses dermoscopic images from the HAM10000 dataset. The dataset comprises images classified into 
seven categories: Actinic keratoses (akiec), Basal cell carcinoma (bcc), Benign keratosis-like lesions (bkl), 
Dermatofibroma (df), Melanocytic nevi (nv), Melanoma (mel), Vascular lesions (vasc). 

The task is a multi-class classification problem defined as: 

• Input: Dermoscopic images 
𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

• Output: Corresponding labels  

𝑌 = {𝑦1, 𝑦, … , 𝑦𝑛} 

where  
𝑦𝑖  ∈ {akiec, bcc, bkl, df, nv,mel, vasc} 

The primary hypothesis of this study is that by quantifying the effectiveness of xAI methods under different 
hyperparameters and comparing them, we can determine which methods provide the most reliable and 
interpretable explanations for skin cancer diagnosis models. This approach aims to fill the existing gap in 
evaluating the quality of visual explanations provided by xAI methods in medical diagnostics. 

3.3 Model 
 
This section presents the various models used, detailing their elements, decision variables, objectives, 
and constraints. 

The following Loss and Optimizer Function equations are applicable to all models mentioned below: 

Categorical Cross Entropy Loss:  

L(y, 𝑦 ) = −∑(yᵢ log(𝑦 ᵢ)) 

where y is the true label, 𝑦  is the predicted probability, summed over the number of classes. 

SGD Optimizer: 
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𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐽(𝜃𝑡) 

where θt represents the parameters at step t, η is the learning rate, and ∇ is the gradient of the loss 

function J with respect to the parameters θ. Adam was used during training, but SGD equation shown first 
for simplification. Adam combines Adaptive Gradient Descent with Root Mean Squared Propagation. The 
steps for Adam are as follows: 

 

 

 

where  is the learning rate, 1 and 2 are the exponential decays for the first and second moments 

respectively, mt is the first moment (mean of gradients), t is the time step, t is the second moment 

(variance of gradients), θt are the model parameters at time t and  is a small constant to prevent division 

by zero. 

 

Models: 

1. Convolutional Neural Networks (CNNs): Architecture: Simple CNNs designed from scratch 
including convolutional, max pooling, batch normalisation, dropout and dense layers. Decision 
Variables: Number of layers, filter sizes, and activation functions. Objectives: Minimize 
classification error and maximize diagnostic accuracy. Constraints: Computational resources and 
potential overfitting. 

2. Transfer Learning Models (DenseNet, ResNet, and MobileNet): Architecture: Pre-trained models 
with added top layers and fine-tuned on the HAM10000 dataset. Decision Variables: Layers to 
freeze/unfreeze, learning rates, and batch sizes. Objectives: Utilize pre-trained knowledge to 
enhance performance on a smaller dataset. Constraints: Risk of overfitting and computational 
efficiency. 

 

Model Equations and Explanation: 

1. CNNs: 

𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑓 ∙ 𝑅𝑒𝐿𝑈(𝑊𝑐2 ∙ 𝑅𝑒𝐿𝑈(𝑊𝑐1 ∙ 𝑋 + 𝑏𝑐1) + 𝑏𝑐2) + 𝑏𝑐𝑓) 

While this is an oversimplification of a more complex CNN, the input image X is passed through two 
convolutional layers with ReLU activation, followed by a fully connected layer with SoftMax to output 
class probabilities. The weights and biases are what the classifier learns. 
 

2. Transfer Learning: 

𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑓 ∙ 𝑅𝑒𝐿𝑈(𝑊𝑐2 ∙ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐿𝑒𝑎𝑟𝑛𝑡(𝐷𝑒𝑛𝑠𝑒𝑡𝑁𝑒𝑡(𝑋) + 𝑏𝑐2) + 𝑏𝑐𝑓) 

The input image X is processed through a pre-trained transfer learning model, followed by a fully 
connected layer to output class probabilities. Practically, a lot more top layers would be added onto the 
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model pre-trained on ImageNet weights and then some of the models layers would also be unfrozen for 
further fine tuning for improved accuracy. 

 

Post Hoc Explainable AI Methods: 

1. SHAP (SHapley Additive exPlanations): Quantifies the contribution of each feature to the final 
prediction, providing a global view of model behaviour  

 

where S is a subset of features, N is the set of all features and v(S) is the prediction when only 
features in S are present. 

2. LIME (Local Interpretable Model-agnostic Explanations): Generates locally faithful explanations 
by approximating the model locally with an interpretable one 

 

where L is the loss function, f is the black-box model, g is the interpretable model, π is a proximity 
measure to the instance x, and Ω(g) is a complexity measure. 

 

3. Integrated Gradients: Computes the average gradients of the output with respect to input 
features, providing insights into feature importance 

 

where x is the input, x′ is the baseline, and F is the model. The baseline can be a zero vector, 
black/white image, a blurred version of the input image or a random/uniform distribution. In this 
study, a random baseline was used (Fong et al, 2017). 

 

Evaluation of Explainability 

Next, we can look at some of the quantitative metrics commonly used for evaluating the explainability 
methods: 

- Faithfulness is the correlation between importance score & actual impact of features 

𝐹𝑎𝑖𝑡ℎ𝑓𝑢𝑙𝑛𝑒𝑠𝑠 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑒𝑎𝑡𝑖𝑜𝑛(𝐸𝑖 , ∆ 𝑦 ) 

where Ei is the explanation score for feature i and Δ 𝑦  is the change in the model prediction when 

feature i is perturbed or removed. 

 

- Sensitivity evaluates how explanations change as the input changes, ensuring consistent identification 
of important features 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑛
∑ 𝐸(𝑥𝑖) − 𝐸(𝑥𝑖") 

𝑛

𝑖=1
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where E(xi) is the explanation for input xi and E(x’i) is the explanation for a slightly perturbed input x’i 
 

- Infidelity is the difference between the explanation and the actual impact of feature perturbations 

𝐼𝑛𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 = 𝐸𝑥,𝛿[   𝛿 ∙ 𝐸(𝑥) − (𝑓(𝑥) − 𝑓(𝑥 − 𝛿) ) )2] 

where δ is a perturbation, E(x) is the explanation for input x and f(x) is the model's prediction for input x. 

 

- Monotonicity assesses whether increasing the importance score of a feature consistently leads to an 
increase in the model's prediction. 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =  ∑ 〖[𝐸(𝑥𝑖) < 𝐸(𝑥𝑖+1)〗  ⇒ 𝑓(𝑥𝑖) < 𝑓(𝑥𝑖+1)]
𝑛−1

𝑖=1
 

where E(xi) is the explanation score, and f(xi) is the model prediction for input xi  

 

- Sparseness evaluates the simplicity of an explanation by measuring the proportion of features that are 
assigned a non-zero importance score. The idea is that a sparser explanation based on fewer features 
would be easier for humans to interpret. 

 

where S(xi) is the important score for feature xi and n is the number of features 

 

- Relative Stability measure consistency with respect to input perturbations. Input stability assesses 
consistency of feature importance scores while output stability measures consistency of the output 

 

where n is the number of perturbations x is the magnitude of the perturbation, y is the model output. For 

the relative input stability case, y can be replaced with feature importance score S. 

 

- IROF (Input Reduction Output Fidelity) measures how much of the input data can be reduced (removed 
or masked) while maintaining the model's original output. A lower IROF score indicates that fewer 
features are required to maintain the same output, suggesting a higher fidelity of the explanation. 

 

where n is the number of samples, x is input with features S removed and y is the output of the model.  
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Chapter 4: Methodology 
 

4.1 Introduction 
 
This section provides a comprehensive overview of the methodology used to address the problem of 
developing and evaluating explainable models for the diagnosis of skin cancer using the HAM10000 
dataset. The methodology involves data preprocessing, classification model development, training, 
evaluation, and the application of explainable AI (xAI) methods to quantify and compare model 
interpretability. 
 
4.2 Methodology 
 
4.2.1 Data Collection and Preprocessing 
 
The HAM10000 dataset comprises 10,015 dermoscopic images, categorized into seven classes: actinic 
keratoses, basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanocytic nevi, 
melanoma, and vascular lesions (Tschandl et al., 2018). This dataset was chosen due to its class diversity, 
clinical relevance and the amount of previous classification research available on it for reference and 
comparison. The dataset was divided into training and validation sets using an 75-25 split, with an 
additional 1500 test images used to finally test the generalizability of the classifiers. Stratified sampling 
was employed to maintain class distribution across all sets. To enhance model robustness, image 
augmentation techniques such as channel and brightness shifts, shears, random rotations, flips and zooms 
were applied to the training set (Perez & Wang, 2017). Oversampling was used to reduce class imbalance 
and rates were based on previous research suggesting a max 300% increase in the smaller classes. Image 
pixel values were normalized to improve model convergence rates. 
 
Preprocessing Pseudo-code: 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

def 𝑑𝑎𝑡𝑎_𝑠𝑝𝑙𝑖𝑡(𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙 = 𝑦): 
𝑋𝑡𝑟𝑎𝑖𝑛 ,  𝑦𝑡𝑟𝑎𝑖𝑛 ,  𝑋𝑡𝑒𝑠𝑡 ,  𝑦𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑎𝑖𝑛_𝑣𝑎𝑙_𝑠𝑝𝑙𝑖𝑡(𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑒 = 0.25, 𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙 = 𝑦) 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑋𝑡𝑟𝑖𝑎𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 

 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑚𝑖𝑛𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 
def 𝑑𝑎𝑡𝑎_𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑟(𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙 = 𝑦): 

𝑋𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ,  𝑦𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑟 (𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 3, 𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙 = 𝑦) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑋𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , 𝑦𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 

 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑖𝑚𝑎𝑔𝑒 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 
def 𝑎𝑢𝑔𝑚𝑒𝑛𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑟𝑎𝑤_𝑖𝑚𝑎𝑔𝑒𝑠): 

𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒𝑠 = [] 
𝑓𝑜𝑟 𝑖𝑚𝑔 𝑖𝑛 𝑟𝑎𝑤_𝑖𝑚𝑎𝑔𝑒𝑠: 

𝑖𝑚𝑔 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑠ℎ𝑖𝑓𝑡(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑓𝑙𝑖𝑝(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑧𝑜𝑜𝑚(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠ℎ𝑒𝑎𝑟(𝑖𝑚𝑔) 
𝑖𝑚𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑖𝑚𝑔) 
𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑚𝑔) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒𝑠 
 
 
4.2.2 Classification Model Development 
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CNNs were built from scratch with varying architectures, including different numbers of convolutional 
layers, kernel sizes, and activation functions. The architectures were optimized through hyperparameter 
tuning. Pre-trained models such as DenseNet, ResNet, and MobileNet were fine-tuned on the HAM10000 
dataset. These models were chosen for their proven efficacy in image classification tasks. 
 
Loss Function and Optimization: Categorical cross-entropy was chosen due to its suitability for multi-class 
classification problems. The Adam optimizer was used over Stochastic Gradient Descent (SGD) because 
of its adaptive learning rate capabilities, which typically result in faster convergence (Kingma & Ba, 2014). 
While SGD can perform better, it can be a lot slower to converge. Reduce on plateau was used to reduce 
the learning rate when the validation loss plateaued, allowing the models to converge more smoothly.  
Experiments were conducted with batch sizes of 8, 32, 64, and 128. The number of epochs varied between 
50 and 200, depending on the convergence behaviour observed during training. 
 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 
def 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙 = 𝑦): 

𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙 =  𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = "𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡", 𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑡𝑜𝑝_𝑙𝑎𝑦𝑒𝑟𝑠) 
𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝑡𝑟𝑎𝑖𝑛 =  𝐹𝑎𝑙𝑠𝑒 

 
𝑥 = 𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙. 𝑜𝑢𝑡𝑝𝑢𝑡 
𝑥 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔_𝑙𝑎𝑦𝑒𝑟𝑠(𝑥) 
𝑥 = 𝑑𝑒𝑛𝑠𝑒_𝑙𝑎𝑦𝑒𝑟𝑠(𝑥) 
𝑥 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑙𝑎𝑦𝑒𝑟𝑠(𝑥) 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑛𝑠𝑒(𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 7, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥) 

 
𝑚𝑜𝑑𝑒𝑙. 𝑡𝑟𝑎𝑖𝑛(𝑖𝑛𝑝𝑢𝑡 = 𝑋, 𝑙𝑎𝑏𝑒𝑙𝑠 = 𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = {𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙}, 𝑒𝑝𝑜𝑐ℎ𝑠,

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑟 = 𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒), 𝑙𝑜𝑠𝑠 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 
 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒(𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑦𝑒𝑟𝑠(𝑡𝑜𝑝 = 5)) 
 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 
 
 
4.2.3 Explanation Model Development 
 
Post hoc explainability methods such as Integrated Gradients, LIME and SHAP were applied to selected 
models to generate explanations for their predictions. These perturbations and saliency-based methods 
help in understanding the contribution of each pixel and feature to the decision of the model. 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 
def 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡 = 𝑖𝑚𝑎𝑔𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙 = 𝑦,𝑚𝑜𝑑𝑒𝑙 = 𝑚𝑜𝑑𝑒𝑙): 

𝑠ℎ𝑎𝑝_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟 =  𝑆ℎ𝑎𝑝𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑖𝑚𝑎𝑔𝑒𝑠, 𝑠ℎ𝑎𝑝_𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑠ℎ𝑎𝑝_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑖𝑚𝑎𝑔𝑒𝑠) 

 
𝑙𝑖𝑚𝑒_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟 = 𝐿𝑖𝑚𝑒𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑖𝑚𝑎𝑔𝑒𝑠, 𝑙𝑖𝑚𝑒_𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
𝑙𝑖𝑚𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑙𝑖𝑚𝑒_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑖𝑚𝑎𝑔𝑒𝑠) 

 
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟 
=  𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟 (𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑖𝑚𝑎𝑔𝑒𝑠, 𝑖𝑛𝑡_𝑔𝑟𝑎𝑑_𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑖𝑚𝑎𝑔𝑒𝑠) 

 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟𝑠, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 

 
 
4.2.4 Model Evaluation 
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Text based explanations and their accompanying evaluation using methods such as METEOR (Metric for 
Evaluation of Translation with Explicit Ordering), ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation) and BLEU (Bilingual Understudy Evaluation) has been seen several times before (Patricio et 
al., 2023). This paper focuses instead on image based explanation methods such as Integrated Gradients, 
LIME and SHAP and evaluates their performance quantitatively. 
 
Classification Models were evaluated using standard metrics such as accuracy, MCC, recall, precision, 
AUC and F1 score. These metrics comprehensively assess the performance of the model, particularly in 
the context of imbalanced datasets.  
 
The effectiveness of xAI methods was quantified using metrics such as faithfulness correlation, sensitivity, 
stability, etc on different variations of the explainers for comparisons. These metrics help in assessing how 
well the explanations align with the classification model’s actual resolution process. 
 
#𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 
def 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟,𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ): 

𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = { } 
 

𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑓𝑎𝑖𝑡ℎ𝑓𝑢𝑙𝑛𝑒𝑠𝑠 =  𝐹𝑎𝑖𝑡ℎ𝑓𝑢𝑙𝑛𝑒𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ , 𝑟𝑢𝑛𝑠 = 10) 
𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =  𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ , 𝑟𝑢𝑛𝑠 = 10) 
𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ , 𝑟𝑢𝑛𝑠 = 10) 
𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ , 𝑟𝑢𝑛𝑠 = 10) 
𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑚𝑜𝑑𝑒𝑙, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ , 𝑟𝑢𝑛𝑠 = 10) 

 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

 
Further details about the equations and theoretical foundations related to the implementations described 
above can be found in the literature review and problem statement sections. 
 
4.2.5 Experimental Setup 
 
Experiments were conducted on a Google Cloud Workbench with 1 NVIDIA L4 GPU along with 4 2-core 
vCPUs with 16 GB memory to accelerate the training and evaluation processes. The models were 
implemented using TensorFlow and Keras frameworks. Code was written from scratch as well as adapted 
from publicly available repositories as needed, with modifications made to suit the specific requirements 
of this project. Appropriate references to original authors were provided where necessary in the codebase. 
The code and trained models, along with documentation, were made available on GitHub (Sangwan 2024). 
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Chapter 5: Legal, Professional and Ethical Issues 

6.1 Introduction 
This chapter explores the professional and ethical considerations inherent in developing models for skin 
cancer diagnosis, emphasizing adherence to international regulatory standards and guidelines such as 
ISO standards for medical devices, CE marking, UKCA marking, and FDA certification. These regulations 
ensure that AI technologies are safe, trustworthy, and respect fundamental rights. The ultimate objective 
is to develop AI models that are not only technically robust but also compliant with these stringent 
standards, ensuring their safe and ethical deployment in clinical settings. *Please note that all compliance 
standards mentioned hereafter provide a reference for adherence, but in the course of building the model, 
I did not officially apply for or get certified through any of these standards. 

6.2 PESTEL Analysis 

Political: Regulatory frameworks like FDA guidelines, ISO standards and the EU AI Act provide a structured 
approach to developing AI-driven medical devices. These regulations mandate transparency, and 
accountability, ensuring that AI systems are safe and reliable. Political support for AI in healthcare can 
facilitate funding, regulatory approvals, and broader acceptance of these technologies. 

Economic: AI-driven diagnostics can significantly reduce costs through automated, early, accurate 
diagnosis, thus reducing the need for more expensive treatments. The economic benefits include cost 
savings for healthcare providers and improved accessibility for patients. This model is in a very preliminary 
stage, but if we consider future development, it is worth noting that the costs of development, regulatory 
compliance, and implementation can be substantial. Ensuring compliance with ISO standards and 
obtaining certifications like CE marking and FDA approval can also add to these costs but are essential 
for market access and trust. 

Standard/Certification Description 

ISO 13485:2016 Medical devices — Quality management systems 
— Requirements for regulatory purposes 

ISO 14971:2019 Medical devices — Application of risk 
management to medical devices 

ISO 14001:2015 Environmental management systems 

General Data Protection Regulation (GDPR) Data protection and privacy regulation in Europe 

European AI Act Regulation on AI within the EU 

CE Marking Conformity marking required for marketing medical 
AI systems in Europe 

UKCA Marking Similar to CE but specific to the UK Market 

US FDA Certification Approval of AI Systems in Healthcare in the US 

ISO 9241-171:2008 Ergonomics of human-system interaction, Part 
171: Guidance on software accessibility 

ISIC Paper (Daneshjou et al 2021) International Skin Imaging Collaboration 
Guidelines for Image based Dermatology AI 

Table 3: List of pertinent standards/certifications for this study 

Social: This project aims to democratize access to high-quality diagnostic tools, potentially bridging gaps 
in healthcare availability, especially in underserved areas. However, the current data lacks sufficient 
diversity, limiting the model's helpfulness across different demographic groups. ISIC released a more 
robust dataset in July 2024, containing 400,000 images from a diverse population sample, that should be 
used in future training of any such model. Future compliance with standards like ISO 13485 could ensure 
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that these tools meet high safety and quality benchmarks, addressing social concerns about AI in 
healthcare. 

Technological: The use of advanced AI techniques like CNNs and transfer learnt DenseNet models has 
represented a crucial step forward in medical diagnostics. Although these techniques were already being 
researched as early as 5 years ago, gap in deployment remains. Making sure the models are 
understandable, which is a primary goal of this study, will go a long way in increasing clinical adoption. 
Additionally, ensuring robust cybersecurity measures is important to protect sensitive patient data and 
maintain trust in AI systems. The dataset used for this study is publicly available and has already gone 
through rigorous measures before being released by the International Skin Imaging Collaboration. Testing 
and validation of AI systems are necessary to ensure their reliability and safety before being released for 
public use. 

Environmental: The environmental impact of AI research, particularly the computational resources 
required, should not be overlooked. Although transfer learning does partly improve training efficiency as 
opposed to building models from scratch, efficiency was not a focus in this current study. Future iterations 
should prioritize researching more efficient algorithms and using data centres with renewable energy 
sources to mitigate the environmental footprint.  

Legal: Compliance with data protection laws, such as GDPR, is critical to safeguarding patient privacy and 
data security. Legal considerations also include intellectual property rights and ensuring that AI models 
are used ethically and responsibly. Adhering to standards such as ISO 14971 for risk management in 
medical devices can ensure that legal and safety risks are appropriately managed. No personal data was 
collected directly for this study and the dataset used passes all compliance requirements. The model 
created will not be released for public use before passing the various certifications and standards 
mentioned above. 

6.3 Ethical Considerations 

AI models must prioritize patient safety and well-being, adhering to ethical principles that respect human 
life. Minimizing the environmental impact of computational resources is essential to ensure sustainability 
for future generations. Compliance with ISO 14001 for environmental management can help mitigate these 
impacts. Ensuring robust data protection measures is paramount in handling sensitive medical data. 
Compliance with GDPR safeguards patient information, maintaining confidentiality and trust. The dataset 
used was anonymized and secure storage practices were followed on Google Cloud Storage during the 
manipulation of the data. 

6.4 Inclusive Engineering Outcomes 

The project should consider the perspectives of all stakeholders, including patients, healthcare providers, 
and policymakers. I personally talked to many doctors and other researchers in this field from the UK, India 
and the US while working on the project to get a better understanding of the situation on-site, patient needs 
and doctor’s requirements/concerns. In the future, I would consider further contact with additional 
stakeholders like patients and policymakers. Engaging with these groups ensures that the solutions are 
relevant, effective, and widely accepted.  

 

Figure 8: UN SDGs pertinent to this project 
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The ISIC group provides a checklist for evaluation of image-based AI algorithm reports in dermatology 
(Daneshjou et al 2021). This study follows all the data, technique, technical assessment and application 
guidelines recommended. The project anticipates future trends in healthcare and technology, ensuring 
that the solutions remain relevant and adaptable. The current model was not trained on a diverse dataset, 
and fairness audits were not conducted due to a lack of better data and time constraints. However, future 
efforts will focus on preventing bias and discrimination by training on diverse datasets and conducting 
regular audits for fairness. Efforts should be made to ensure that diagnostic tools are accessible to all, 
regardless of socioeconomic status or geographic location. Compliance with ISO 9241-171 for accessibility 
requirements can ensure that the tools are usable by people with diverse abilities. This project aligns with 
several UN SDGs, including Good Health and Well-being (Goal 3), Industry, Innovation, and Infrastructure 
(Goal 9) and Reduced Inequalities (Goal 10). By improving access to diagnostic tools and reducing health 
disparities, the project contributes to these global goals. 

 

6.5 Conclusion 

By keeping in mind regulations in standards such as ISO standards, CE marking, and FDA certification, 
we could ensure that the development of AI-driven diagnostic tools is responsible and sustainable. The 
research supports the UN Sustainable Development Goals by promoting health equity and innovation. 
This holistic approach underscores the importance of integrating ethical considerations into engineering 
practices, ensuring that technological advancements benefit society as a whole.  
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Chapter 6: Results 

6.1 Introduction 
 
This chapter presents the results obtained from the experimental processes discussed in the previous 
chapters. The key findings are organized into sections focusing on data analysis, impact of oversampling 
and augmentation techniques, performance of the trained classification models, and evaluation of 
explanation methods. This analysis allows for a thorough understanding of the success and limitations of 
models and methods applied in this study. 
 
6.2 Data Analysis and Oversampling 
 
The dataset, HAM10000, initially exhibited significant class imbalance, with some classes being 
underrepresented. To mitigate this, oversampling techniques were employed, particularly focusing on 
randomly replicating instances from the minority classes. 
 
Original Dataset: The original dataset distribution revealed a significant skew towards certain classes, 
potentially leading to biased model training. This imbalance posed a challenge in accurately predicting the 
underrepresented classes. 
 
Oversampled Dataset: After applying random oversampling, the dataset was more balanced, ensuring that 
minority classes were adequately represented during the training process.  
 

 

A) Original Dataset 
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B) Oversampled Dataset 
 

Figure 9: Comparing the distribution of the original vs the oversampled dataset 
 

6.3 Image Augmentation 
 
Augmentation involved generating multiple variations of input images through random transformations, 
such as rotations, translations, flips, and zooms. This approach increased the effective size of the training 
dataset while exposing the model to a wider variety of scenarios. A new random augmentation is applied 
to every image in each epoch. The two figures below showcase the augmentations. The first figure shows 
how the same image is augmented slightly differently in every epoch, thereby giving the model a bit more 
information. The second figure showcases how the augmentation is applied to a batch of images (batch 
size of 32 shown in the example). 
 

 
a) Original Image 

 

 
b) Augmentations of the Image 

 
Figure 10: Example of different augmentations of the same image over different epochs. First image is 

the original followed by 6 different random augmentations over 6 epochs 
 
 

 
a) Original Images 
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b) Augmented Images 

 
Figure 11: Example of a batch of original images and their augmentations during a single epoch. New 

augmentations generated each epoch 
 
6.4 Classification Models 
 
The study developed and tested several classification models, each trained and validated using the 
augmented and oversampled dataset. The models included a custom-built CNN as well as pre-trained 
models such as DenseNet and MobileNet, fine-tuned through transfer learning. The performance of these 
models was evaluated using a set of metrics, with the results shown below in comparison with other state-
of-the-art research in this field. Please note that the results are from the validation set. Tested on a 
completely unseen set from a different source of images, the model achieved accuracy, precision and 
recall values of around 80%. 
 

Model Accuracy Precision Recall 
F1 
Score 

AUC MCC 

CNN (from scratch) 87 87 87 87 98 81 

MobileNet (transfer 
learning) 

91 91 91 91 99 88 

DenseNet (transfer 
learning) 

93.28 93.62 93.28 93.3 99.64 92 

Efficient-B4 (Huang et al. 
2021) 

85.8 91.91 96 93.91 - - 

ResNet50V2/EfficientNet-
B0 (Bansal et al 2022) 

88 86 89 87.48 - - 

Fully Convolutional Network 
DenseNet (Adegun and 
Viriri, 2020) 

98.3 98 98.5 98 - - 
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Generative Adversarial 
network (Qin et al 2020) 

95.2 74.3 83.1 78.45 - - 

InceptionV3 (Rab Ratul et 
al) 

90.95 89 89 89 - - 

Genetic Algorithm tuned 
CNN (Salih and Duffy, 
2023) 

95.96 96 95.86 96 - - 

VGG16 (Tabrizchi et al 
2022) 

87.05 - 85.23 92.21 92.31 - 

DermoExpert (Hasan et al 
2022) 

- 85 86 - 97 - 

Hybrid U-Net MobileNetV3 
(Lilhore et al 2024) 

98.03 97.32 94.07 97.03 97.09 - 

ResNet101 Dynamic 
Multiscale CNN (Han et al 
2024) 

97.3 96.58 94.94 94.78 - - 

Ensemble Deep Learning 
(Hossain et al 2024) 

95 95 95 95 - - 

Improved Recurrent Unit 
Networks and Orca 
Predation Algorithm (Zhang 
et al 2024) 

98 95 95 95 - - 

Table 4: Comparing the trained classification models’ validation metrics with state-of-the-art methods 
 
The figures below show a more detailed view of the models’ performance, showing some examples of 
the class wise metrics, confusion matrices and training history. 
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A) DenseNet 

 

B) MobileNetV3  

Figure 12: Confusion Matrices on Validation Data 

 

Classes Precision Recall F1-Score 

Akiec 0.97 0.92 0.95 

Bcc 0.94 0.98 0.96 

Bkl 0.92 0.98 0.93 

Df 0.88 1.00 0.96 

Mel 0.98 0.95 0.91 

Nv 0.98 0.90 0.94 

vasc 0.98 1.00 0.99 

accuracy 0.94   

Macro avg 0.94 0.96 0.95 

weighted avg. 0.94 0.94 0.94 

Table 5: Class-wise metrics example (DenseNet121) 
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Figure 13: Training History Example (MobileNetV3) 

 

6.5 Explanation Models 
 
Post hoc explanation methods, including Integrated Gradients, LIME and SHAP were applied to the 
predictions made by the classification models. These methods provided insights into which features 
contributed to the models' decisions. Some examples of this implementation are shown below. 
 
 
SHAP Examples 
 

 
A) Predicted Probabilities: bkl/’2’: 9.8544139e-01, nv/“5”: 1.4558283e-02 

 
B) Predicted Probabilities: mel/”4”: 5.0333261e-01, bkl/“2”: 2.3027517e-01, nv/”5: 2.6623964e-01 

 
C) Predicted Probabilities: vasc/”6”: 9.9994862e-01 



30 

 

 
D) Predicted Probabilities: bcc/“1”: 8.5888600e-01, nv/”5”: 1.2207900e-01 

 
E) Predicted Possibilities: akiec/“0”: 9.8774838e-01 

 
Figure 14: Some Examples of SHAP with the original image on the left and the accompanying map of 

SHAP values for each label sequentially following it. Red indicates positives markers for that label while 
blue indicates markers against that label. 

 
 

LIME Examples 

 
 
Figure 15: Some examples of lesions and associated masks from LIME, showing the important features. 

All images are of the top label output of the model.\ 
 
 

Integrated Gradients Examples 
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Figure 16: Some examples of Integrated Gradients showing relevant important features for the 

prediction.  
 
6.6 Explanation Evaluations 

 

Metric 
Steps=20, 
Runs=2 

Steps=20, 
Runs=20 

Steps=50, 
Runs=2 

Steps=50, 
Runs=20 

Steps=80, 
Runs=2 

Steps=150, 
Runs=2 

 

Monotonicity Estimate 0.19 0.2114 0.2119 0.23 0.2263 0.2364 

 

 

IROF (Input 
Reduction Output 
Fidelity) 

62.17 64.641 64.31 64.62 62.28 64.29 

 

 

Faithfulness Estimate 0.0312 0.0566 0.0281 0.0235 - 0.0208  

Sparseness 0.4825 0.455 0.4785 0.4498 0.4786 0.459 

 

 

Complexity 5.014 5.0602 5.0219 5.0702 5.0212 5.0549 

 

 

Relative Output 
Stability 

9.83E+09 6.34E+09 2.20E+10 1.56E+09 9.78E+08 2.05E+09 

 

 

Relative Input Stability 8.96E+07 3.65E+07 1.68E+08 1.01E+07 5.84E+06 8.63E+06 

 

 

Table 6: Evaluation of integrated gradients under different hyperparameters 

All metrics were calculated and averaged over the same batch of 32 lesion images. Due to the 
computing/time constraints involved, a more involved analysis with further variation in the hyperparameters 
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and additional explainers could not be conducted. But there are still some preliminary insights to be gained 
from the data above. For example, both relative input and output stability go down as the number of runs 
are increased. This makes sense since the explainers can average out unimportant noisy features over 
multiple runs, leading to a better/lower stability score. On the other hand, a clear relationship between 
number of steps in integrated gradients and stability is not as apparent, although there is an improvement 
in stability as steps increase. This could possibly be due to the local ‘stability’ minima lying between some 
values. Of course, the lack of enough data is another possibility for the lack of an apparent relationship 
over this variable. Sparseness (lower is better) corroborates the insights from stability, suggesting that as 
more runs are allowed and more parameters made available to increase explainer complexity, it homes in 
on the most important features.  

Complexity seems to increase as the number of steps, or the number of runs is increased. This could 
suggest the use of this metric to avoid overfitting due to larger hyperparameters that increase model 
complexity, but only in tandem with another metric that makes sure the explainer isn’t underfit to the model 
(an explainer that doesn’t do anything would achieve a complexity of zero for example). Monotonicity 
(higher is better) is another metric that improves as steps or runs are increased. Faithfulness Estimate and 
IROF (Input Reduction Output Fidelity) are both metrics that fluctuate over the tested space of 
hyperparameters, making it hard to gain insights from them. It is not clear whether this is an issue with 
sample space under which they were tested, an issue with the implementation of the calculation itself or 
whether these metrics might not be suitable for this specific task. It is worth noting that there were also 
other tested metrics, such as monotonicity, sufficiency and completeness that gave the same results for 
all combinations (All True/All False for instance) and were therefore not included in the table for 
differentiation purposes. From this analysis, two things become clear: there are clearly insights to be drawn 
as to which explainer can perform best by analysing them under different metrics but work still needs to 
be done to figure out which metrics to use and how to use them in tandem.  
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Chapter 7: Conclusion 

 

This project focused on addressing the critical issue of evaluating explainability in AI-driven medical 

diagnostics, particularly within the context of a heavily class imbalanced skin cancer dataset. The primary 

hypothesis was that enhancing explainability through the evaluation of advanced post hoc methods would 

lead to improved trustworthiness and usability of AI models in medical diagnosis. The problem was 

modelled using state-of-the-art CNNs combined with transfer learning techniques, such as DenseNet and 

MobileNet. The approach involved a comprehensive evaluation of explanation methods like Integrated 

Gradients and Grad-CAM to assess their effectiveness in providing clear, faithful explanations that align 

with clinical requirements. The results of this study highlight both the promise and the challenges of current 

xAI methods. While some evaluation methods did indicate a potential correlation between the metrics and 

hyperparameter adjustments, these correlations were not consistent across all metrics, making it 

challenging to pinpoint which metrics should be prioritized in a standardized evaluation framework. It is 

possible that such a framework may need to be tailored to specific problems. Additionally, the current 

strategy of applying post hoc methods after model training might benefit from being integrated into the 

training process itself. By incorporating metrics like faithfulness and robustness during training, it may be 

possible to guide models toward more interpretable and reliable explanations, optimizing these aspects 

as part of the model's learning process rather than evaluating them after the fact. 

Despite these promising results, several limitations remain that could impact the broader applicability and 

effectiveness of the proposed methods. One significant limitation is the reliance on pixel-based 

explanations, which may not capture the process in a way that is meaningful to clinicians. Future work 

could explore the use of segmentation-based assessments to provide more localized and interpretable 

explanations, like how radiologists assess regions of interest in medical images. Additionally, user studies 

involving healthcare professionals could be integrated into the evaluation process to ensure that the 

explanations generated by AI models align with clinical reasoning and practical decision-making. Another 

limitation is the presence of noise in the images, such as hair, which could be addressed by pre-processing 

steps like hair removal to improve the clarity of explanations. Furthermore, the current methods did not 

incorporate concept-based explanations that mirror diagnostic checklists used by doctors (e.g., ABCDE 

for melanoma assessment), which could enhance the relevance and interpretability of AI decisions. Future 

research could focus on developing and testing concept-based xAI methods that resonate more closely 

with clinical practices, as well as refining the evaluation metrics to include both qualitative and quantitative 

assessments from end-users. Additionally, extending the study to include diverse datasets and real-time, 

continuous learning models could further validate the robustness and generalizability of these methods.  
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